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Abstract

This chapter will provide a thorough end-to-end description of the process for
evaluation of three different data-driven algorithms for anomaly detection to select
the best candidate for deployment as part of a suite of IVHM (Integrated Vehicle
Health Management) technologies. These algorithms were deemed to be suffi-
ciently mature for consideration as viable candidates for demonstration during the
launch of Ares I-X. This launch represents the first test flight of Ares I, which will
be the successor to the Space Shuttle for NASA’s Constellation program. Data-
driven algorithms are just one of three different types being deployed [3],[5]. The
other two types of algorithms being deployed include a “rule-based” expert sys-
tem, and a “model-based” system. Within these two categories, the deployable
candidates have already been selected based upon non-quantitative factors such as
flight heritage and system certifiability. For the rule-based system, SHINE (Space-
craft High-speed Inference Engine) has been selected for deployment, which is a
component of BEAM (Beacon-based Exception Analysis for Multimissions) [4], a
patented technology developed at NASA’s JPL (Jet Propulsion Laboratory) and
serves to aid in the management and identification of operational modes. For
the “model-based” system, a commercially available package developed by QSI
(Qualtech Systems, Inc.), TEAMS (Testability Engineering and Maintenance Sys-
tem) [1] has been selected for deployment to aid in diagnosis. In the context of
this particular deployment, distinctions among the use of the terms “data-driven,”
“rule-based,” and “model-based,” can be found in [5].

Although there are three different categories of algorithms that have been se-
lected for deployment, our main focus in this chapter will be on the evaluation
of three candidates fordata-drivenanomaly detection. These algorithms will be
evaluated based upon their capability for robustly detecting incipient faults or fail-
ures in the ground-based phase of pre-launch space shuttle operations, rather than
based on system certifiability as performed in previous studies [5]. Robust detec-
tion will allow for the achievement of pre-specified minimum false alarm and/or
missed detection rates in the selection of alert thresholds. All algorithms will also
be optimized with respect to an aggregation of these same criteria. Our study relies
upon the use of Shuttle data to act as a proxy for and in preparation for application
to Ares I-X data, which uses a very similar hardware platform for the subsystems
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that are being targeted (TVC - Thrust Vector Control subsystem for the SRB (Solid
Rocket Booster)).

The main thrust of the chapter is to provide instructive coverage on the topics of
algorithmic optimization and alert threshold selection. All data-driven algorithms
under investigation will be optimized and compared using a variety of metrics in-
cluding the AUC (Area under the ROC (Receiver Operating Characteristic) curve),
and an “FPR (False Positive Rate))-limited” variant of the AUC that only consid-
ers performance evaluation for algorithmic comparison for low false positive rates.
This involves measurement of the partial area under the ROC curve up to a max-
imum prescribed false alarm rate. We take cues from the fields of radiology and
medical diagnostics in regards to the use of this metric (pAUC), whose implemen-
tation, development, and evaluation of the advantages and disadvantages of the
latter and related methods (e.g. quantification of standard error for the AUC, etc.)
are far more mature than their use in the current application [6]-[7]. The literature
is sparse on the use of such metrics for aerospace applications, with only a recent
study documenting it [2].

Other metrics to be considered use the AUC and pAUC, however with a slightly
modified definition of false alarms and missed detections that accounts for pre-
defined latencies and prediction horizons. These definitions are based largely upon
pragmatic user requirements in order to prevent the over-penalization of test points
that do not match ground truth classification for each individual time point. By
providing for a marginal allowance or window of time around the test time point
in question, we implicitly allow for a more relaxed definition of false alarms and
missed detection rates, thereby counteracting their artificial inflation when adher-
ing to stricter definitions. We can approximate these modified definitions of false
alarms and missed detections by “shifting” the ground truth vector by the respec-
tive latency and prediction window values, and averaging the resulting AUC and
pAUC values across the two extremes.

Alert threshold selection will be the final topic covered in the chapter, which
will use the results of AUC/pAUC metric optimization. Due to the fact that these
metrics represent overall classification discriminability, optimal algorithmic para-
meters can be found and used to perform threshold or alert selection based upon
the corresponding ROC curve. This allows for alert threshold selection based upon
specified minimum false alarm and/or missed detection rates to demonstrate a ro-
bust anomaly detection capability. As a practical measure we will also present
a performance comparison among the candidate data-driven algorithms by eval-
uation of their computational complexity as well as the metrics that have been
introduced thus far. The final results will also include a formal cross-validation
procedure, which will be used to perform optimization and alert threshold selec-
tion. Realizations of an unseen hold out test case will finally be used to illustrate
the superiority of a particular algorithmic technique.
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